Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mutat Res Rev Mutat Res ; 793: 108491, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522822

RESUMO

Humans ingest particles and fibers on daily basis. Non-digestible carbohydrates are beneficial to health and food additives are considered safe. However, titanium dioxide (E171) has been banned in the European Union because the European Food Safety Authority no longer considers it non-genotoxic. Ingestion of microplastics and nanoplastics are novel exposures; their potential hazardous effects to humans have been under the radar for many years. In this review, we have assessed the association between oral exposure to man-made particles/fibers and genotoxicity in gastrointestinal tract cells and secondary tissues. We identified a total of 137 studies on oral exposure to particles and fibers. This was reduced to 49 papers with sufficient quality and relevance, including exposures to asbestos, diesel exhaust particles, titanium dioxide, silver nanoparticles, zinc oxide, synthetic amorphous silica and certain other nanomaterials. Nineteen studies show positive results, 25 studies show null results, and 5 papers show equivocal results on genotoxicity. Recent studies seem to show null effects, whereas there is a higher proportion of positive genotoxicity results in early studies. Genotoxic effects seem to cluster in studies on diesel exhaust particles and titanium dioxide, whereas studies on silver nanoparticles, zinc oxide and synthetic amorphous silica seem to show mainly null effects. The most widely used genotoxic tests are the alkaline comet assay and micronucleus assay. There are relatively few results on genotoxicity using reliable measurements of oxidatively damaged DNA, DNA double strand breaks (γH2AX assay) and mutations. In general, evidence suggest that oral exposure to particles and fibers is associated with genotoxicity in animals.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37973296

RESUMO

The ubiquitous pollution of plastic particles in most environmental matrices leads to concern about any potential adverse effects on human health. Most studies on the toxicological effect of nanoplastics has focused on standard particles of polystyrene. In reality humans are exposed to a large variety of different types and sizes of plastic material via oral intake and inhalation. In this study, we investigated the effect of polyethylene terephthalate (PET) nanoplastic particles from ground food containers from a supermarket. The aim was to investigate a possible link between exposure to PET nanoplastics and genotoxic response in a cell model of the human airway epithelial (A549) cells. Further, we investigated the combined effect of PET and chemicals known to alter the cellular redox state, as a model of partially compromised antioxidant defense system. DNA damage was assessed by the alkaline comet assay. The ground PET nanoplastics have a mean hydrodynamic diameter of 136 nm in water. The results showed that PET exposure led to increased reactive oxygen species production (approximately 30 % increase compared to unexposed cells). In addition, exposure to PET nanoplastic increased the level of DNA strand breaks (net increase = 0.10 lesions/106 base pair, 95 % confidence interval: 0.01, 0.18 lesions/106 base pair). Pre- or post-exposure to hydrogen peroxide or buthionine sulfoximine did not lead to a higher level of DNA damage. Overall, the study shows that exposure to PET nanoplastics increases both intracellular reactive oxygen production and DNA damage in A549 cells.


Assuntos
Microplásticos , Polietilenotereftalatos , Humanos , Microplásticos/toxicidade , Células A549 , Polietilenotereftalatos/toxicidade , Embalagem de Alimentos , Dano ao DNA , Pulmão
3.
Toxicology ; 499: 153662, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37923288

RESUMO

Many in vitro and in vivo studies have shown that exposure to carbon nanotubes (CNTs) is associated with inflammation, oxidative stress and genotoxicity, although there is a paucity of studies on these effects in the pleural cavity. In the present study, we investigated adverse outcomes of pleural exposure to multi-walled CNTs (MWCNT-7, NM-401 and NM-403) and single-walled CNTs (NM-411). Female C57BL/6 mice were exposed to 0.2 or 5 µg of CNTs by intra-pleural injection and sacrificed one-year post-exposure. Exposure to long and straight types of MWCNTs (i.e. MWCNT-7 and NM-401) was associated with decreased number of macrophages and increased number of neutrophils and eosinophils in pleural lavage fluid. Increased protein content in the pleural lavage fluid was also observed in mice exposed to MWCNT-7 and NM-401. The concentration of mesothelin was increased in mice exposed to MWCNT-7 and NM-411. Levels of DNA strand breaks and DNA oxidation damage, measured by the comet assay, were unaltered in cells from pleural scrape. Extra-pleural effects were seen in CNT exposed mice, including enlarged and pigmented mediastinal lymph nodes (all four types of CNTs), pericardial plaques (MWCNT-7 and NM-401), macroscopic abnormalities on the liver (MWCNT-7) and ovaries/uterus (NM-411). In conclusion, the results demonstrate that intra-pleural exposure to long and straight MWCNTs is associated with adverse outcomes. Certain observations such as increased content of mesothelin in pleural lavage fluid and ovarian/uterine abnormalities in mice exposed to NM-411 suggests that exposure to SWCNTs may also be associated with some adverse outcomes.


Assuntos
Nanotubos de Carbono , Animais , Feminino , Camundongos , DNA/metabolismo , Dano ao DNA , Pulmão/patologia , Mesotelina , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/efeitos adversos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade
4.
Mutat Res Rev Mutat Res ; 792: 108468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37666295

RESUMO

There is concern about human exposure to nanoplastics from intentional use or degradation of plastics in the environment. This review assesses genotoxic effects of nanoplastics, defined as particles with a primary size of less than 1000 nm. The majority of results on genotoxicity come from studies on polystyrene (PS) particles in mammalian cell cultures. Most studies have measured DNA strand breaks (standard comet assay), oxidatively damaged DNA (Fpg-modified comet assay) and micronuclei. Twenty-nine out of 60 results have shown statistically significant genotoxic effects by PS exposure in cell cultures. A statistical analysis indicates that especially modified PS particles are genotoxic (odds ratio = 8.6, 95 % CI: 1.6, 46) and immune cells seems to be more sensitive to genotoxicity than other cell types such as epithelial cells (odds ratio = 8.0, 95 % CI: 1.6, 39). On the contrary, there is not a clear association between statistically significant effects in genotoxicity tests and the primary size of PS particles, (i.e. smaller versus larger than 100 nm) or between the type of genotoxic endpoint (i.e. repairable versus permanent DNA lesions). Three studies of PS particle exposure in animals have shown increased level of DNA strand breaks in leukocytes and prefrontal cortex cells. Nanoplastics from polyethylene, propylene, polyvinyl chloride and polyethylene terephthalate have been investigated in very few studies and it is currently not possible to draw conclusion about their genotoxic hazard. In summary, there is some evidence suggesting that PS particles may be genotoxic in mammalian cells.


Assuntos
Dano ao DNA , Microplásticos , Animais , Humanos , Ensaio Cometa/métodos , Testes de Mutagenicidade/métodos , DNA , Mamíferos
5.
Basic Clin Pharmacol Toxicol ; 133(3): 265-278, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37312155

RESUMO

Inhalation studies are the gold standard for assessing the toxicity of airborne materials. They require considerable time, special equipment, and large amounts of test material. Intratracheal instillation is considered a screening and hazard assessment tool as it is simple, quick, allows control of the applied dose, and requires less test material. The particle-induced pulmonary inflammation and acute phase response in mice caused by intratracheal instillation or inhalation of molybdenum disulphide or tungsten particles were compared. End points included neutrophil numbers in bronchoalveolar lavage fluid, Saa3 mRNA levels in lung tissue and Saa1 mRNA levels in liver tissue, and SAA3 plasma protein. Acute phase response was used as a biomarker for the risk of cardiovascular disease. Intratracheal instillation of molybdenum disulphide or tungsten particles did not produce pulmonary inflammation, while molybdenum disulphide particles induced pulmonary acute phase response with both exposure methods and systemic acute phase response after intratracheal instillation. Inhalation and intratracheal instillation showed similar dose-response relationships for pulmonary and systemic acute phase response when molybdenum disulphide was expressed as dosed surface area. Both exposure methods showed similar responses for molybdenum disulphide and tungsten, suggesting that intratracheal instillation can be used for screening particle-induced acute phase response and thereby particle-induced cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Tungstênio , Animais , Camundongos , Reação de Fase Aguda/induzido quimicamente , RNA Mensageiro
6.
Mutagenesis ; 38(4): 238-249, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37232551

RESUMO

Biofuel is an attractive substitute for petrodiesel because of its lower environmental footprint. For instance, the polycyclic aromatic hydrocarbons (PAH) emission per fuel energy content is lower for rapeseed methyl ester (RME) than for petrodiesel. This study assesses genotoxicity by extractable organic matter (EOM) of exhaust particles from the combustion of petrodiesel, RME, and hydrogenated vegetable oil (HVO) in lung epithelial (A549) cells. Genotoxicity was assessed as DNA strand breaks by the alkaline comet assay. EOM from the combustion of petrodiesel and RME generated the same level of DNA strand breaks based on the equal concentration of total PAH (i.e. net increases of 0.13 [95% confidence interval (CI): 0.002, 0.25, and 0.12 [95% CI: 0.01, 0.24] lesions per million base pairs, respectively). In comparison, the positive control (etoposide) generated a much higher level of DNA strand breaks (i.e. 0.84, 95% CI: 0.72, 0.97) lesions per million base pairs. Relatively low concentrations of EOM from RME and HVO combustion particles (<116 ng/ml total PAH) did not cause DNA strand breaks in A549 cells, whereas benzo[a]pyrene and PAH-rich EOM from petrodiesel combusted using low oxygen inlet concentration were genotoxic. The genotoxicity was attributed to high molecular weight PAH isomers with 5-6 rings. In summary, the results show that EOM from the combustion of petrodiesel and RME generate the same level of DNA strand breaks on an equal total PAH basis. However, the genotoxic hazard of engine exhaust from on-road vehicles is lower for RME than petrodiesel because of lower PAH emission per fuel energy content.


Assuntos
Poluentes Atmosféricos , Brassica napus , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Células A549 , Ésteres , Material Particulado/toxicidade , Testes de Mutagenicidade/métodos , Dano ao DNA , Óleos de Plantas/toxicidade , DNA , Pulmão , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
7.
Part Fibre Toxicol ; 20(1): 4, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650530

RESUMO

BACKGROUND: Acute phase response (APR) is characterized by a change in concentration of different proteins, including C-reactive protein and serum amyloid A (SAA) that can be linked to both exposure to metal oxide nanomaterials and risk of cardiovascular diseases. In this study, we intratracheally exposed mice to ZnO, CuO, Al2O3, SnO2 and TiO2 and carbon black (Printex 90) nanomaterials with a wide range in phagolysosomal solubility. We subsequently assessed neutrophil numbers, protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, Saa3 and Saa1 mRNA levels in lung and liver tissue, respectively, and SAA3 and SAA1/2 in plasma. Endpoints were analyzed 1 and 28 days after exposure, including histopathology of lung and liver tissues. RESULTS: All nanomaterials induced pulmonary inflammation after 1 day, and exposure to ZnO, CuO, SnO2, TiO2 and Printex 90 increased Saa3 mRNA levels in lungs and Saa1 mRNA levels in liver. Additionally, CuO, SnO2, TiO2 and Printex 90 increased plasma levels of SAA3 and SAA1/2. Acute phase response was predicted by deposited surface area for insoluble metal oxides, 1 and 28 days post-exposure. CONCLUSION: Soluble and insoluble metal oxides induced dose-dependent APR with different time dependency. Neutrophil influx, Saa3 mRNA levels in lung tissue and plasma SAA3 levels correlated across all studied nanomaterials, suggesting that these endpoints can be used as biomarkers of acute phase response and cardiovascular disease risk following exposure to soluble and insoluble particles.


Assuntos
Nanoestruturas , Óxido de Zinco , Camundongos , Animais , Reação de Fase Aguda/induzido quimicamente , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Pulmão/metabolismo , Nanoestruturas/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Front Public Health ; 10: 906430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875006

RESUMO

Large plastic litters degrade in the environment to micro- and nanoplastics, which may then enter the food chain and lead to human exposure by ingestion. The present study explored ways to obtain nanoplastic particles from real-life food containers. The first set of experiments gave rise to polypropylene nanoplastic suspensions with a hydrodynamic particle size range between 100 and 600 nm, whereas the same grinding process of polyethylene terephthalate (PET) produced suspensions of particles with a primary size between 100 and 300 nm. The exposure did not cause cytotoxicity measured by the lactate dehydrogenase (LDH) and water soluble tetrazolium 1 (WST-1) assays in Caco-2 and HepG2 cells. Nanoplastics of transparent PET food containers produced a modest concentration-dependent increase in DNA strand breaks, measured by the alkaline comet assay [net induction of 0.28 lesions/106 bp at the highest concentration (95% CI: 0.04; 0.51 lesions/106 base pair)]. The exposure to nanoplastics from transparent polypropylene food containers was also positively associated with DNA strand breaks [i.e., net induction of 0.10 lesions/106 base pair (95% CI: -0.04; 0.23 lesions/106 base pair)] at the highest concentration. Nanoplastics from grinding of black colored PET food containers demonstrated no effect on HepG2 and Caco-2 cells in terms of cytotoxicity, reactive oxygen species production or changes in cell cycle distribution. The net induction of DNA strand breaks was 0.43 lesions/106 bp (95% CI: 0.09; 0.78 lesions/106 bp) at the highest concentration of nanoplastics from black PET food containers. Collectively, the results indicate that exposure to nanoplastics from real-life consumer products can cause genotoxicity in cell cultures.


Assuntos
Microplásticos , Plásticos , Células CACO-2 , DNA , Células Hep G2 , Humanos , Plásticos/toxicidade , Polipropilenos
9.
J Colloid Interface Sci ; 606(Pt 1): 464-479, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399363

RESUMO

Lyotropic non-lamellar liquid crystalline (LLC) nanoparticles, with their tunable structural features and capability of loading a wide range of drugs and reporter probes, are emerging as versatile injectable nanopharmaceuticals. Secondary emulsifiers, such as Pluronic block copolymers, are commonly used for colloidal stabilization of LLC nanoparticles, but their inclusion often compromises the biological safety (e.g., poor hemocompatibility and enhanced cytotoxicity) of the formulation. Here, we introduce a library of colloidally stable, structurally tunable, and pH-responsive lamellar and non-lamellar liquid crystalline nanoparticles from binary mixtures of a phospholipid (phosphatidylglycerol) and three types of omega-3 fatty acids (ω-3 PUFAs), prepared in the absence of a secondary emulsifier and organic solvents. We study formulation size distribution, morphological heterogeneity, and the arrangement of their internal self-assembled architectures by nanoparticle tracking analysis, synchrotron small-angle X-ray scattering, and cryo-transmission electron microscopy. The results show the influence of type and concentration of ω-3 PUFAs in nanoparticle structural transitions spanning from a lamellar (Lα) phase to inverse discontinuous (micellar) cubic Fd3m and hexagonal phase (H2) phases, respectively. We further report on cell-culture medium-dependent dynamic fluctuations in nanoparticle size, number and morphology, and simultaneously monitor uptake kinetics in two human cell lines. We discuss the role of these multiparametric biophysical transformations on nanoparticle-cell interaction kinetics and internalization mechanisms. Collectively, our findings contribute to the understanding of fundamental steps that are imperative for improved engineering of LLC nanoparticles with necessary attributes for pharmaceutical development.


Assuntos
Ácidos Graxos Ômega-3 , Cristais Líquidos , Nanopartículas , Humanos , Micelas , Fosfolipídeos
10.
Mutat Res Rev Mutat Res ; 788: 108393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34893158

RESUMO

Carbon nanotubes (CNTs) were the first nanomaterials to be evaluated by the International Agency for Research on Cancer (IARC). The categorization as possibly carcinogenic agent to humans was only applicable to multi-walled carbon nanotubes called MWCNT-7. Other types of CNTs were not classifiable because of missing data and it was not possible to pinpoint unique CNT characteristics that cause cancer. Importantly, the European Commission's Joint Research Centre (JRC) has established a repository of industrially manufactured nanomaterials that encompasses at least four well-characterized MWCNTs called NM-400 to NM-403 (original JRC code). This review summarizes the genotoxic effects of these JRC materials and MWCNT-7. The review consists of 36 publications with results on cell culture experiments (22 publications), animal models (9 publications) or both (5 publications). As compared to the publications in the IARC monograph on CNTs, the current database represents a significant increase as there is only an overlap of 8 publications. However, the results come mainly from cell cultures and/or measurements of DNA strand breaks by the comet assay and the micronucleus assay (82 out of 97 outcomes). A meta-analysis of cell culture studies on DNA strand breaks showed a genotoxic response by MWCNT-7, less consistent effect by NM-400 and NM-402, and least consistent effect by NM-401 and NM-403. Results from other in vitro tests indicate strongest evidence of genotoxicity for MWCNT-7. There are too few observations from animal models and humans to make general conclusions about genotoxicity.


Assuntos
Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Animais , Dano ao DNA , Humanos
11.
Chem Res Toxicol ; 34(11): 2235-2250, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704445

RESUMO

Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.


Assuntos
DNA/análise , Poluentes Atmosféricos/farmacologia , Biomarcadores/análise , DNA/efeitos dos fármacos , Dano ao DNA , Exposição Ambiental , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
12.
Arch Toxicol ; 95(10): 3407-3416, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34468814

RESUMO

Biofuels from vegetable oils or animal fats are considered to be more sustainable than petroleum-derived diesel fuel. In this study, we have assessed the effect of hydrogenated vegetable oil (HVO) exhaust on levels of DNA damage in peripheral blood mononuclear cells (PBMCs) as primary outcome, and oxidative stress and inflammation as mediators of genotoxicity. In a randomized cross-over study, healthy humans were exposed to filtered air, inorganic salt particles, exhausts from combustion of HVO in engines with aftertreatment [i.e. emission with nitrogen oxides and low amounts of particulate matter less than 2.5 µm (approximately 1 µg/m3)], or without aftertreatment (i.e. emission with nitrogen oxides and 93 ± 13 µg/m3 of PM2.5). The subjects were exposed for 3 h and blood samples were collected before, within 1 h after the exposure and 24 h after. None of the exposures caused generation of DNA strand breaks and oxidatively damaged DNA, or affected gene expression of factors related to DNA repair (Ogg1), antioxidant defense (Hmox1) or pro-inflammatory cytokines (Ccl2, Il8 and Tnfa) in PBMCs. The results from this study indicate that short-term HVO exhaust exposure is not associated with genotoxic hazard in humans.


Assuntos
Biocombustíveis/toxicidade , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Adulto , Antioxidantes/metabolismo , Estudos Cross-Over , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Óxidos de Nitrogênio/análise , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/análise , Emissões de Veículos/análise , Adulto Jovem
13.
Toxicol Sci ; 183(1): 184-194, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34086969

RESUMO

Carbon nanotubes (CNTs) are speculated to cause mesothelioma by persistent inflammation, oxidative stress, tissue injury, and genotoxicity. To investigate the pleural response to CNTs, we exposed C57BL/6 mice by intrapleural injection of 0.2 or 5 µg multiwalled CNTs (MWCNT-7, NM-401, and NM-403) or single-walled CNTs (NM-411). Inflammatory response, cellular reactive oxygen species (ROS) production of pleural lavage cells, and genotoxicity in cells from the mesothelial surface were assessed at days 1 and 90 after the exposure. Long and rigid types of MWCNTs (MWCNT-7 and NM-401) caused acute inflammation, characterized by influx of macrophages, neutrophils, and eosinophils into the pleural cavity. The inflammation was still evident at 90 days after the exposure, although it had reduced dramatically. The cellular ROS production was increased at day 90 after the exposure to MWCNT-7 and NM-401. The short and tangled type of MWCNT (ie NM-403) did not cause pleural inflammation or ROS production in pleural fluid cells. The exposure to NM-411 did not cause consistent inflammation responses or cellular ROS production. Levels of DNA strand breaks and DNA oxidation damage were unaltered, except for NM-411-exposed mice that had increased levels of DNA strand breaks at 90 days after the exposure. In conclusion, the long and rigid CNTs caused prolonged inflammatory response and increased ROS production in pleural lavage cells, yet it was not reflected in higher levels of DNA damage in pleural tissue.


Assuntos
Nanotubos de Carbono , Animais , Dano ao DNA , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio
14.
Nanotoxicology ; 15(5): 661-672, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33899660

RESUMO

Carbon nanotubes (CNTs) are fiber-like nanomaterials, which are used in various applications with possible exposure to humans. The genotoxicity and carcinogenic potential of CNTs remain to be fully understood. This study assessed the genotoxicity of three different multi-walled carbon nanotubes (MWCNTs) (MWCNT-7, NM-401 and NM-403) and one single-walled carbon nanotube (SWCNT) (NM-411) in FE1-Muta™Mouse lung epithelial (MML) cells using the alkaline comet assay. With the 2',7'-dichlorodihydrofluorescein diacetate fluorescent probe, we assessed the effect of CNT-exposure on the intracellular production of reactive oxygen species (ROS). We measured the effect of a 10-week CNT exposure on telomere length using quantitative PCR. Two of the included MWCNTs (NM-401 and MWCNT-7) and the SWCNT (NM-411) caused a significant increase in the level of DNA damage at concentrations up to 40 µg/ml (all concentrations pooled, p < 0.05), but no concentration-response relationships were found. All of the CNTs caused an increase in intracellular ROS production compared to unexposed cells (ptrend < 0.05). Results from the long-term exposure showed longer telomere length in cells exposed to MWCNTs compared to unexposed cells (p < 0.01). In conclusion, our results indicated that the included CNTs cause ROS production and DNA strand breaks in FE1-MML cells. Moreover, the MWCNTs, but not the SWCNT, had an impact on telomere length in a long-term exposure scenario.


Assuntos
Dano ao DNA , Nanotubos de Carbono , Telômero , Células Epiteliais , Humanos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio
15.
Biomacromolecules ; 22(2): 386-398, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33125232

RESUMO

A key initiating step in atherosclerosis is the accumulation and retention of apolipoprotein B complexing lipoproteins within the artery walls. In this work, we address this exact initiating mechanism of atherosclerosis, which results from the oxidation of low-density lipoproteins (oxLDL) using therapeutic nanogels. We present the development of biocompatible polyethylene glycol (PEG) cross-linked nanogels formed from a single simultaneous cross-linking and co-polymerization step in water without the requirement for an organic solvent, high temperature, or shear stress. The nanogel synthesis also incorporates in situ noncovalent electrostatically driven template polymerization around an innate anti-inflammatory and anti-oxidizing paraoxonase-1 (PON-1) enzyme payload-the release of which is triggered because of matrix metalloproteinase responsive elements instilled in the PEG cross-linker monomer. The results obtained demonstrate the potential of triggered release of the PON-1 enzyme and its efficacy against the production of ox-LDL, and therefore a reduction in macrophage foam cell and reactive oxygen species formation.


Assuntos
Lipoproteínas LDL , Polietilenoglicóis , Nanogéis , Polimerização , Água
16.
Crit Rev Toxicol ; 50(5): 383-401, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32543270

RESUMO

Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation.


Assuntos
Poluentes Atmosféricos/toxicidade , Biocombustíveis/toxicidade , Testes de Mutagenicidade , Animais , Humanos , Estresse Oxidativo , Material Particulado , Emissões de Veículos
17.
Sci Total Environ ; 740: 139759, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569908

RESUMO

Mining rare earth elements (REEs) can release large amounts of metal(loid)-rich dust, which can pose significant health risks to local residents. However, compared to other types of particulates, toxicity of mining dust has been largely overlooked. To provide experimental evidence on toxicity of REE mine dust, the study assessed the oxidative stress potential and genotoxicity of inhalable particles collected in a REE mining area, and associated toxicological response with source compositions. Both source types (i.e., mine and tailing area) and distances from source (i.e., industrial and residential areas) were considered when selecting the 44 sampling sites. The particle samples contained 2.3-3.5 folds higher concentrations of tested metal(loid)s than background concentrations in soil. Specially, elevated Fe, REEs, Cd, Pb were found. In spite of low cytotoxicity in lung epithelial A549 cells, there was increased cellular ROS production by of particle exposure. Samples with higher mining-originated source contributions (Provenance Index <0.3) had higher cellular ROS production (1.72 fold, 95%CI: 1.66-1.79 fold) than samples with lower mining contributions (1.58 fold, 95%CI: 1.52-1.65 fold). The factors soil (~46%), mine (~22%), and heavy metal (~20%) sources were recognized by source apportionment analysis as the main contributors to cellular ROS production; importantly, mine and heavy metal sources counted more in industrial samples. While samples generated genotoxicity, there were no differences in DNA damage between the location groups of sampling. Collectively, the results indicate that particles in mining areas may cause ROS production and DNA damage in lung cells depending on mine dust. Coupled with the long-range transportation potential of mine dust, safety measures on open pit and dust disposal sites should be adopted.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Dano ao DNA , Poeira/análise , Monitoramento Ambiental , Mineração , Saúde Pública , Espécies Reativas de Oxigênio
18.
Toxicol Lett ; 322: 20-31, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31923465

RESUMO

Particulate matter (PM) from combustion processes has been associated with oxidative stress to DNA, whereas effects related to telomere dysfunction are less investigated. We collected air-borne PM from a passenger cabin of a diesel-propelled train and at a training facility for smoke diving exercises. Effects on oxidative stress biomarkers, genotoxicity measured by the comet assay and telomere length in PM-exposed A549 cells were compared with the genotoxicity and telomere length in peripheral blood mononuclear cells (PBMCs) from human volunteers exposed to the same aerosol source. Although elevated levels of DNA strand breaks and oxidatively damaged DNA in terms of Fpg-sensitive sites were observed in PBMCs from exposed humans, the PM collected at same locations did not cause genotoxicity in the comet assay in A549 cells. Nevertheless, A549 cells displayed telomere length shortening after four weeks exposure to PM. This is in line with slightly shorter telomere length in PBMCs from exposed humans, although it was not statistically significant. In conclusion, the results indicate that genotoxic potency measured by the comet assay of PM in A549 cells may not predict genotoxicity in exposed humans, whereas telomere length measurements may be a novel indicator of genotoxic stress in cell cultures and humans.


Assuntos
Dano ao DNA , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Fumaça/efeitos adversos , Homeostase do Telômero/efeitos dos fármacos , Emissões de Veículos/toxicidade , Células A549 , Poluentes Ocupacionais do Ar/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Bombeiros , Humanos , Exposição por Inalação/análise , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula , Homeostase do Telômero/genética
19.
Front Immunol ; 10: 2543, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708933

RESUMO

The breast milk plays a crucial role in shaping the initial intestinal microbiota and mucosal immunity of the infant. Interestingly, breastfeeding has proven to be protective against the early onset of immune-mediated diseases including type 1 diabetes. Studies have shown that exosomes from human breast milk are enriched in immune-modulating miRNAs suggesting that exosomal miRNAs (exomiRs) transferred to the infant could play a critical role in the development of the infant's immune system. We extracted exomiRs from breast milk of 52 lactating mothers (26 mothers with type 1 diabetes and 26 healthy mothers), to identify any differences in the exomiR content between the two groups. Small RNA-sequencing was performed to identify known and novel miRNAs in both groups. A total of 631 exomiRs were detected by small RNA sequencing including immune-related miRNAs such as hsa-let-7c, hsa-miR-21, hsa-miR-34a, hsa-miR-146b, and hsa-miR-200b. In addition, ~200 novel miRNAs were identified in both type 1 diabetes and control samples. Among the known miRNAs, nine exomiR's were found differentially expressed in mothers with type 1 diabetes compared to healthy mothers. The highly up-regulated miRNAs, hsa-miR-4497, and hsa-miR-3178, increased lipopolysaccharide-induced expression and secretion of tumor necrosis factor α (TNFα) in human monocytes. The up-regulated miRNA target genes were significantly enriched for longevity-regulating pathways and FoxO signaling. Our findings suggest a role of breast milk-derived exomiRs in modulating the infant's immune system.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Exossomos/química , Vesículas Extracelulares/química , MicroRNAs/análise , Leite Humano/química , Adulto , Aleitamento Materno , Células CACO-2 , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Lactente , Recém-Nascido , Mucosa Intestinal/imunologia , Macrófagos/imunologia , MicroRNAs/fisiologia , Leite Humano/fisiologia , Análise de Sequência de RNA , Fator de Necrose Tumoral alfa/biossíntese
20.
Reprod Toxicol ; 90: 134-140, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31449912

RESUMO

Several types of engineered nanoparticles (ENP) have been shown to adversely affect male reproduction in rodent studies, but the airway route of exposure has been little investigated. This precludes adequate risk assessment of ENP exposure in occupational settings. Titanium dioxide nanoparticles (TiO2 NP) have been shown to affect total sperm count in adult male mice after intravenous and oral administration. This study aimed to investigate whether also airway exposure would affect sperm counts in male mice. Mature C57BL/6J mice were intratracheally instilled with 63 µg of rutile nanosized TiO2, once weekly for seven weeks. Respirable α-quartz (SRM1878a) was included at a similar dose level as a positive control for pulmonary inflammation. BALF cell composition showed neutrophil granulocyte influx as indication of pulmonary inflammation in animals exposed to TiO2 NP and α-quartz, but none of the particle exposures affected weight of testes or the epididymis, sperm counts or plasma testosterone when assessed at termination of the study.


Assuntos
Nanopartículas/toxicidade , Quartzo/toxicidade , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Epididimo/efeitos dos fármacos , Contagem de Leucócitos , Masculino , Camundongos Endogâmicos C57BL , Contagem de Espermatozoides , Testículo/efeitos dos fármacos , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...